EM-based Multidimensional Parameterized Modeling of General Passive Planar Components

Tom Dhaene¹, Jan De Geest³, Daniël De Zutter³

¹Agilent EEs of EDA, Agilent Technologies
³Department of Information Technology (INTEC), Ghent University

Abstract — A new adaptive algorithm is presented for building multidimensional parameterized analytical models for general passive planar components. The component models are based on multiple full-wave electro-magnetic (EM) simulations. The modeling accuracy level is chosen by the user. Models can be generated for arbitrarily geometries and substrates, and they can be easily implemented and used in commercial circuit simulators. The adaptive model generation process is an up-front time investment and requires multiple EM simulations. The model extraction provides EM-accuracy and generality at traditional circuit simulation speed.

I. INTRODUCTION

Precise characterization of high-frequency passive planar components is very important for circuit simulation and optimization purposes. Different numerical EM analysis techniques (e.g., the method of moments, the finite elements method, the finite difference time domain method) can be used to accurately simulate passive interconnection structures. Those numerical EM techniques might require a significant amount of computer resources, so that they are hardly being used for designing and optimizing huge and complex networks. Circuit simulators on the other hand are very fast, and offer a lot of different analysis possibilities. However, the number of available high-frequency models in circuit simulators is limited, and the accuracy is not always guaranteed up to high frequencies.

Numerous efforts have been made to build models for general interconnection structures based on full-wave simulations. Previously used techniques include look-up tables [1], curve fitting techniques [2] and neural networks [3]. A common drawback of these previous efforts is the lack of knowledge about the accuracy of the resulting models. The technique described here - in what follows, referred to as MAPS (Multidimensional Adaptive Parameter Sampling) [4] - selects a minimum number of EM simulations, builds a global analytical fitting model for the scattering parameters of general planar structures as a function of the geometrical parameters and of the frequency, with predefined accuracy. Data points are selected efficiently and model complexity is automatically adapted. The algorithm consists of an adaptive modeling loop (section II) and an adaptive sample selection loop (section III). Examples are given to illustrate the technique (section IV). The work presented in this paper is submitted for patenting in the US by Agilent Technologies.

II. ADAPTIVE MODEL BUILDING ALGORITHM

The scattering parameters S are represented by a weighted sum of multidimensional orthonormal polynomials (multinomials) P_m. The multinomials only depend on the multidimensional coordinates \tilde{x} in the parameter space R, while the weights C_m only depend on the frequency f:

$$ S(f, \tilde{x}) = M(f, \tilde{x}) = \sum_{m=1}^{M} C_m(f) P_m(\tilde{x}) $$

The weights C_m are calculated by fitting equation (1) on a set of D data points $\{\tilde{x}_i, S(f, \tilde{x}_i)\}$ (with $d = 1, ..., D$). The number of multinomials in the sum is adaptively increased until the error function:

$$ E(f, \tilde{x}) = |M(f, \tilde{x}) - S(f, \tilde{x})| $$

is lower than a given threshold (which is function of the desired accuracy of the model) in all the data points. For numerical stability and efficiency reasons orthonormal multinomials are used, i.e. the multinomials $P_m(\tilde{x})$ satisfy the condition:

$$ \sum_{m=1}^{M} P_m(\tilde{x}_d) P_m(\tilde{x}_d) = \begin{cases} 1 & \text{for } k = l \\ 0 & \text{for } k \neq l \end{cases} $$

III. ADAPTIVE DATA SELECTING ALGORITHM

The modeling process starts with an initial set of data points. New data points are selected adaptively in such a
way that a predefined accuracy Δ for the models is
guaranteed. The process of selecting data points and
building models in an adaptive way is often called
reflective exploration [5]. Reflective exploration is useful
when the process that provides the data is very costly,
which is the case for full-wave electro-magnetic (EM)
simulators. Reflective exploration requires reflective
functions that are used to select a new data point. The
reflective function used in the MAPS algorithm is the
difference between two different models (different order
M in equation (1)). A new data point is selected near the
maximum of the reflective function. When the magnitude
of the reflective function becomes smaller than Δ over the
whole parameter space, no new data point is selected.

If one of the scattering parameters has a local minimum
or maximum in the parameter space of interest, it is
important to have at least one data point in the close
vicinity of this extremum in order to get an accurate
approximation. Therefore, if there is no data point close to
a local maximum or minimum of $M(f, x)$, the local
extremum is selected as a new data point. For resonant
structures, the power loss has local maxima at the
resonance frequencies. Again, to get an accurate
approximation, a good knowledge of these local maxima is
very important.

The scattering parameters of a linear, time-invariant,
passive circuit satisfy certain physical conditions. If the
model fails these physical conditions, it cannot accurately
model the scattering parameters. The physical conditions
act as additional reflective functions: if they are not
satisfied, a new data point is chosen where the criteria are
violated the most.

The complete flowchart of the algorithm is given in
figure 1.

IV. EXAMPLES

A. Model Generation: microstrip components

The MAPS (Multidimensional Adaptive Parameter
Sampling) algorithm was used to generate analytical
models for an open stub and for a (symmetrical) tee, both
on a 635 μm microstrip substrate, with $\varepsilon_r = 10.0$ (figures 2
and 3). Feedlines are connected to all ports (635 μm).

The open stub model has one variable geometrical
parameter, namely the width of the stub (W). There is only
one relevant S-parameter, S_{11}.

The tee model has two geometrical parameters: the
width of the thru line (W_{thru}) and the width of the stub
(W_{stub}). There are three relevant S-parameters, S_{1s}, S_{2s},
and S_{3s}. The ranges of the continuously varying
geometrical parameters are given in tables 1 and 2.

Fig. 1. Adaptive multidimensional modeling flowchart

Fig. 2. Microstrip open stub component with variable
width and fixed feedline length

Fig. 3. Microstrip tee with variable Thru-width and Stub-
width, and fixed feedline length
<table>
<thead>
<tr>
<th>variable</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W)</td>
<td>100 (\mu)m</td>
<td>1000 (\mu)m</td>
</tr>
<tr>
<td>(f)</td>
<td>1 GHz</td>
<td>20 GHz</td>
</tr>
</tbody>
</table>

Table 1. Parameter ranges for the microstrip open stub

<table>
<thead>
<tr>
<th>variable</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_{\text{thru}})</td>
<td>100 (\mu)m</td>
<td>1000 (\mu)m</td>
</tr>
<tr>
<td>(W_{\text{stub}})</td>
<td>300 (\mu)m</td>
<td>600 (\mu)m</td>
</tr>
<tr>
<td>(f)</td>
<td>1 GHz</td>
<td>20 GHz</td>
</tr>
</tbody>
</table>

Table 2. Parameter ranges for the microstrip tee

The scattering parameters are generated using the commercially available full-wave electro-magnetic simulator Momentum [6].

The desired accuracy for the open stub model was set to -60 dB. Building this model required 10 data points (adaptively selected). The accuracy of the model was checked in 71 points randomly chosen along the \(W \)-axis. The maximum deviation found between the MAPS model and Momentum was -60.6 dB.

The desired accuracy for the tee model was set to -55 dB. Here there were 31 data points needed (adaptively selected) during model generation. The accuracy of the tee model was checked in 208 points randomly chosen in the parameter space. The maximum deviation found between the MAPS model and Momentum was -54.3 dB.

B. Model extraction: Lowpass filter

The adaptively generated models were used to simulate a lowpass elliptic filter on a 635 \(\mu \)m microstrip substrate \((\varepsilon_r = 10.0) \). The layout is given in figure 4 [7].

Figures 5 and 6 show the magnitude of \(S_{11} \) and \(S_{12} \) simulated (a) with Momentum, (b) with a commercial circuit simulator, and (c) with the MAPS models for the open end and the tee components. The results using the multiple MAPS models correspond very well to the global full-wave results, and yet the simulation using the MAPS models only took a fraction of the time required for the full-wave simulation (due to the divide and conquer technique used). On a 450 MHz PC the full-wave simulation took 5037 seconds, while the simulation using the MAPS models was virtually instantaneous. The results obtained with the 'classic' analytical models of the circuit simulator differ significantly from the full-wave results.
V. CONCLUSION

A new adaptive technique (MAPS) was presented for building parameterized models for general passive planar interconnection structures. The models are based on full-wave EM simulations, and have a pre-defined accuracy. Once generated, the analytical models can be grouped in a library, and incorporated in a circuit simulator where they can be used for simulation, design and optimization purposes. An elliptic filter example was given to illustrate the technique. The results based on the parameterized models correspond very well with the global full-wave simulations. However, the time required for a simulation using the compact analytical MAPS models was only a fraction of the time required for a global full-wave simulation. The generality and accuracy of the new parameterized models are far better than the traditional analytical models.

REFERENCES

